
Efficient Multi-User Hybrid Precoding and
Combining for mmWave Massive MIMO Systems

Kaijie Zeng, Yuanli Ma, Bin Yan, Zheng Wang, Yili Xia
School of Information Science and Engineering

Southeast University, Nanjing, China
Email: kaijie zeng@seu.edu.cn, myl@seu.edu.cn, bin yan@seu.edu.cn, wznuaa@gmail.com, yili xia@seu.edu.cn

Abstract—For downlink millimeter wave (mmWave) massive
multiple-input multiple-output (MIMO) systems, this paper pro-
poses an efficient multi-user hybrid precoding and combining
(EMU-HPC) scheme to maximize the sum-rate with low feedback
overhead. Specifically, we adopt a non-iterative generalized low
rank approximation of matrices (NI-GLRAM) framework in the
analog stage to harvest the array gain with minimal feedback
overhead. Meanwhile, for each mobile station (MS), a low-
complexity truncated singular value decomposition (TSVD) is
implemented for efficient analog combining. To further enhance
the sum-rate, we propose a joint analog-digital interference
suppression strategy, in which the orthogonal matrix projection
is applied in analog precoding, followed by the regularized
channel diagonalization (RCD) in the digital stage. Numerical
results confirm that the proposed EMU-HPC method achieves
superior sum-rate performance with low feedback overhead and
computational complexity.

Index Terms—Massive MIMO, multi-user MIMO, hybrid pre-
coding, sum-rate maximization.

I. INTRODUCTION

In 5G systems and beyond, the integration of mmWave
and massive MIMO compensates for severe path loss and
enables high sum-rate via precoding [1]. However, fully digital
precoding is impractical due to its prohibitive hardware cost
and power consumption from radio frequency (RF) chains [2].
To address this issue, hybrid precoding has emerged as a
solution, which connects a digital baseband precoder to an
analog RF precoder with far fewer RF chains [3]. In multi-
user MIMO (MU-MIMO), the problem of hybrid precoding
and combining design is normally divided into analog and
digital stages for sum-rate optimization [4]–[7]. Yet achieving
higher sum-rate without increasing feedback overhead remains
challenging.

In particular, the work in [4] employs exhaustive codebook
search and equal gain transmission in the analog stage to
obtain array gains, followed by block diagonalization in the
digital stage for interference elimination. With the same dig-
ital design, [5] exploits low rank approximations to enhance
array gains, while [6] maximizes the capacity of baseband
channels. Although these methods reduce feedback overhead
by separately designing analog precoder and combiners, the
interference is managed solely in the digital stage, which
limits the sum-rate. To solve this problem, [7] incorporates
interference management in the analog stage using orthogonal
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vector projections and employs alternating optimization (AO)
for array gains, but the increased feedback overhead from
successive AOs may hinder its deployment.

To achieve high sum-rate with low feedback overhead, an
efficient multi-user hybrid precoding and combining scheme,
named EMU-HPC, is proposed for mmWave massive MIMO
systems. Specifically, to maximize the array gain, we employ
the NI-GLRAM framework in the analog stage with low
feedback cost, while the TSVD in analog combining is real-
ized efficiently via the variance-reduced principal component
analysis (VR-PCA) in the LazySVD framework. For sum-rate
improvement, we propose a joint analog-digital interference
management scheme, with the orthogonal matrix projection
first applied in analog precoding, followed by RCD in the
digital stage. Numerical results demonstrate that EMU-HPC
attains superior sum-rate with minimal feedback overhead and
reduced computational complexity.

II. SYSTEM MODEL

We consider a single-cell massive MU-MIMO downlink
system. The base station (BS) equipped with Nt transmit
antennas and Mt RF chains serves K MSs, and each MS
has Nr receive antennas and Mr RF chains to multiplex Ns
data streams. For effective communications, the constraints
Ns = Mr ≪ Nr and KNs = Mt ≪ Nt are assumed. The
narrowband mmWave channel for the k-th MS (MS-k) is
modeled by the Saleh–Valenzuela model [4] as

Hk =

√
βkNtNr

NcNray

Nc∑
i=1

Nray∑
l=1

αkilar(ϕ
k
il)a

H
t (θkil), (1)

which consists of Nc clusters, each propagating Nray paths,
with βk denoting the large-scale fading factor. Uniform lin-
ear arrays (ULAs) are employed at the BS and all MSs.
For the (i, l)-th path in Hk, αkil ∼ CN (0, 1) is the path
gain, ϕkil and θkil are azimuth angles of arrival (AoA) and
departure (AoD). ar(ϕ

k
il) and at(θ

k
il) represent the receive

and transmit array response vectors, respectively, of the form
a(ψ) = 1√

N
[1, ej

2π
λ d sin(ψ), . . . , ej(N−1) 2π

λ d sin(ψ)]T , where N
is the number of antennas and ψ can be the AoA or AoD,
λ is the signal wavelength and d = λ

2 is the antenna spacing
without loss of generality.

At the BS, the aggregated data streams s = [sT1 , . . . , s
T
K ]T ,

where sk ∈ CNs×1 contains the data streams for MS-k,



is processed by a digital precoder FD ∈ CMt×KNs and an
analog precoder FA ∈ CNt×Mt . Thus, the signal transmitted
to the mmWave channels is written as x = FAFDs. The
total power budget Pt is allocated as E{ssH} = Pt

KNs
IKNs ,

where E{·} denotes expectation. Thus, to meet the transmit
power constraint E{∥x∥22} = Pt, the hybrid precoder should
be normalized such that ∥FAFD∥2F = KNs.

At MS-k, the received signal is processed by an analog
combiner WA,k ∈ CNr×Mr and a digital combiner WD,k ∈
CMr×Ns . In particular, since the analog precoder and combiner
are implemented by phase shifters, their entries are subject
to constant modulus (CM) constraints, i.e., |FA(i, j)| =
1√
Nt
, ∀i, j and |WA,k(i, j)| = 1√

Nr
, ∀i, j, k. After the analog

precoding and combining, the baseband channel for MS-k is
defined as H̃k = WH

A,kHkFA.
After digital combining, the signal-to-interference-plus-

noise ratio (SINR) of the i-th data stream in MS-k is

SINRki =
Ski

Iki +Nki
,



Ski = Pki |wH
ki
H̃kfki |2,

Iki =
∑Ns
l=1
l ̸=i

Pkl |wH
ki
H̃kfkl |2

+
∑K

m=1
m̸=k

Ns∑
j=1

Pmj |wH
ki
H̃kfmj |2,

Nki = σ2
n∥wH

ki
WH

A,k∥22,
(2)

where Pki is the power allocated to the i-th data stream of
sk. The first term of Iki is the intra-user interference and the
second term is the multi-user interference (MUI). σ2

n is the
power of additive white Gaussian noise, wki is the i-th column
of WD,k, and fki is the [(k − 1)Ns + i]-th column of FD.

Assuming Gaussian data symbols, the design problem of
hybrid precoding and combining to maximize the sum-rate is
formulated as

max
FA,FD,

{WA,k,WD,k}Kk=1

R =

K∑
k=1

Ns∑
i=1

E{log2(1 + SINRki)}, (3a)

s.t. ∥FAFD∥2F = KNs, (3b)
FA ∈ FA, (3c)
WA,k ∈ WA,k, ∀k, (3d)

where FA and WA,k, ∀k, are the feasible sets for the ana-
log precoder and combiners, respectively, satisfying the CM
constraints. Unfortunately, the optimization problem (3) is
non-convex, rendering its global optimum intractable. Conse-
quently, existing methods [5], [7] adopt the two-stage design
pattern as follows:

a) Analog Stage Design: The analog precoder FA and
combiners {WA,k}Kk=1 are obtained at this stage such that
the aggregated baseband channel H̃ = [H̃T

1 , . . . , H̃
T
K ]T is a

diagonal low-rank approximation of H = [HT
1 , . . . ,H

T
K ]T . In

this way, array gains are maximized and MUI is sufficiently
suppressed. Assuming {WA,k}Kk=1 and FA to be semi-unitary,
the analog stage design problem is given as [5]

max
FA,{WA,k}K

k=1

K∑
k=1

∥WH
A,kHkFA∥2F , (4a)

s.t. FHA FA = IMt , W
H
A,kWA,k = IMr , ∀k, (4b)

FA ∈ FA, WA,k ∈ WA,k, ∀k. (4c)
After relaxing the CM constraints, non-convex problem (4)
can be approximately solved by the generalized low rank
approximations of matrices [5], which involves AO between
FA and {WA,k}Kk=1, incurring prohibitive feedback overhead.

b) Digital Stage Design: Based on the baseband channel
{H̃k}Kk=1 formed by FA and {WA,k}Kk=1, the digital precoder
FD and combiners {WD,k}Kk=1 are derived for interference
mitigation.

III. HYBRID PRECODING AND COMBINING DESIGN

In this section, we elaborate and analyze the proposed
EMU-HPC method. In the analog stage, to maximize array
gains without AO, we adopt the NI-GLRAM framework [8],
which designs the combiners and precoder non-iteratively.
Moreover, the analog precoding achieves a balance between
array gains and MUI suppression. In the digital stage, RCD [9]
is applied to mitigate the residual interference and noise,
followed by an analysis of complexity and feedback overhead.

A. Analog Combining Design
The analog combiner for MS-k is designed to maximize the

array gain. Specifically, following NI-GLRAM, we decouple
the analog combining design from (4) as

max
{WA,k}K

k=1

K∑
k=1

∥WH
A,kHk∥2F , (5a)

s.t. WH
A,kWA,k = IMr ,WA,k ∈ WA,k, ∀k. (5b)

Since (5) remains non-convex, we relax CM constraints and
obtain a semi-unitary solution ŴA,k for MS-k,∀k, given by
the first Mr left singular vectors of Hk, i.e., ŴA,k = Uk(:
, 1 :Mr), with the singular value decomposition (SVD) Hk =
UkDkV

H
k [8]. However, direct TSVD at each MS may be

prohibitive under limited computational resources.
To reduce this computational burden, we implement the VR-

PCA method [10] within the LazySVD framework [11] to
approximate the required TSVD at each MS, which is based on
stochastic gradient ascent with guaranteed convergence [10].
Specifically, to estimate the m-th left singular vector of Hk via
VR-PCA, the t-th iteration within epoch s updates as follows:

wt = wt−1+γ[h
(m)
it

(h
(m)H

it
wt−1−h

(m)H

it
w̃s−1)+µs], (6)

where γ is the step size, wt and w̃s are the per-iteration and
per-epoch estimates with unit ℓ2 norm. µs is the gradient at
w̃s−1, and h

(m)
it

is the it-th column of the deflated channel
matrix H

(m)
k with it randomly selected. The maximum number

of epochs is Nepoch, and the number of iterations per epoch is
Nt [10]. VR-PCA converges if ∥wNt−w̃s−1∥2 ≤ ε is satisfied
at the end of an iteration, where ε is the error tolerance.

In the LazySVD framework, the m-th left singular vector
u

′

m obtained from VR-PCA is orthonormalized with all pre-
vious vectors U(m−1) = [u1, . . . ,um−1] as

um =
(INr −U(m−1)U(m−1)H )u

′

m∥∥(INr −U(m−1)U(m−1)H )u′
m

∥∥
2

. (7)



Algorithm 1 Analog Combining Scheme for MS-k
Input: Hk, Nepoch, γ, ε
Output: WA,k

1: Initialize U(0) = ∅, H(1)
k = Hk

2: for m = 1 to Mr do
3: Initialize w̃0 ∼ CN (0Nr×1, INr), w̃0 ← w̃0

∥w̃0∥2

4: Initialize the error vector e = w̃0

5: s = 1
6: while s ≤ Nepoch and ∥e∥2 > ε do
7: µs =

1
Nt

∑Nt
i=1 h

(m)
i

(
h
(m)H

i w̃s−1

)
8: w0 = w̃s−1

9: for t = 1 to Nt do
10: Sample it randomly from {1, 2, . . . , Nt}
11: Get h(m)

it
and update wt by (6)

12: Normalize wt as wt ← wt

∥wt∥2

13: end for
14: Obtain the error vector as e = wNt − w̃s−1

15: w̃s = wNt

16: s← s+ 1
17: end while
18: Obtain u

′

m as u
′

m = w̃s−1 and obtain um by (7)
19: Obtain H

(m+1)
k by (8)

20: Enlarge U(m) by U(m) = [U(m−1),um]
21: end for
22: Given ŴA,k = U(Mr), obtain WA,k by (9)

Based on this, the deflated channel matrix H
(m)
k is updated

by projecting it onto the orthogonal complement of um as

H
(m+1)
k = (INr − umuHm)H

(m)
k , (8)

which is the input for the next round of VR-PCA. The
resulting Mr vectors form the semi-unitary analog combiner
ŴA,k. Under the CM constraint, the analog combiner WA,k

approximates ŴA,k via phase extraction, given as

WA,k =
1√
Nr

exp
[
j∠

(
ŴA,k

)]
, (9)

where ∠(·) represents the element-wise phase extraction for a
matrix. After that, MS-k computes H̄k = WH

A,kHk and feeds
it back to the BS for analog precoding. The analog combining
scheme for MS-k is summarized in Algorithm 1.

B. Analog Precoding Design

The analog precoding is designed to balance array gain
enhancement and MUI suppression based on {H̄k}Kk=1 from
all MSs. Following NI-GLRAM, the analog precoding design
based on (4) is given as

max
FA

K∑
k=1

∥H̄kFA∥2F , (10a)

s.t. FHA FA = IMt , FA ∈ FA. (10b)

However, for each MS, (10) fails to distinguish its desired
array gain from the MUI it causes to the other MSs, resulting

in maximizing both. This leads to an imbalance between array
gain harvesting and MUI suppression. To address this issue,
we design a dedicated analog precoder FA,k ∈ CNt×Mr for
each MS-k and form the overall analog precoder as FA =
[FA,1, . . . ,FA,K ]. Based on this, the desired array gain for
MS-k is ∥H̄kFA,k∥2F , while the MUI from MS-k to the other
MSs is

∑
p̸=k ∥H̄pFA,k∥2F . However, jointly maximizing the

former and minimizing the latter is difficult since the row space
of H̄k misaligns with the common null space of H̄p’s, ∀p ̸= k.

To resolve this, we relax the CM constraint and design the
column space of semi-unitary analog precoder F̂A,k to align
with the row space of H̄k after projecting H̄k onto the joint
orthogonal complement of F̂A,1, . . . , F̂A,k−1, resulting in the
residual channel matrix H̄res,k, given by

H̄res,k =

{
H̄1, k = 1

H̄k

∏k−1
i=1

(
INt − F̂A,iF̂

H
A,i

)
, k > 1

(11)

if the previously obtained F̂A,i, ∀i < k, are semi-unitary for
k = 2, or mutually orthogonal for k ≥ 3. Then, we modify the
analog precoding problem for MS-k from (10) to a MUI-aware
array gain maximization problem as follows:

max
FA,k

∥H̄res,kFA,k∥2F , (12a)

s.t. FHA,kFA,k = IMr , FA,k ∈ FA,k, (12b)

where FA,k is the feasible set for FA,k. Its semi-unitary
solution is F̂A,k = V̄k(:, 1 : Mr) obtained via SVD H̄res,k =
ŪkD̄kV̄

H
k . Thus, by designing MS-1 to MS-K recursively,

each F̂A,k satisfies the semi-unitary condition for k = 1
and the mutual orthogonality condition for k ≥ 2, i.e.,
F̂HA,pF̂A,q = 0Mr×Mr , ∀p, q ≤ k, p ̸= q, thereby validating
the computation of H̄res,k+1 via (11).

The elements of F̂A,k are then phase-extracted to meet the
CM constraint. Therefore, FA,k is given by

FA,k =
1√
Nt

exp
[
j∠

(
F̂A,k

)]
, (13)

with the following MUI suppression property.

Proposition 1. The analog precoder in (13) minimizes the
upper bound of the prior MUI term ∥H̄pFA,k∥2F , ∀p < k.

Proof. From the mutual orthogonality condition and (11),
it follows that the approximate prior MUI term satisfies
H̄pF̂A,k = 0Mr×Mr , ∀p < k. Leveraging this property, the
actual prior MUI term is upper-bounded as∥∥H̄pFA,k

∥∥2
F
=

∥∥∥H̄pFA,k − H̄pF̂A,k

∥∥∥2
F

≤
∥∥H̄p

∥∥2
2

∥∥∥F̂A,k − FA,k

∥∥∥2
F
.

(14)

Since ∥H̄p∥2 is constant, minimizing the upper bound is
equivalent to minimizing ∥F̂A,k − FA,k∥2F to obtain FA,k
under the CM constraint. As shown in [12], the optimal
analog precoder achieving this minimization is given by (13),
concluding the proof.



In summary, for each MS, the MUI generated to prior MSs
is effectively suppressed, while the MUI to later MSs persists
due to the balance with array gain harvesting.

C. Digital Precoding and Combining Design
In the digital stage, RCD is applied to the baseband channel

H̃k, ∀k, to suppress the remaining interference and noise.
The RCD method first addresses the MUI plus noise

under minimum mean square error criterion, where the
digital precoder for MS-k is T

(a)
k . We define ¯̄Hk =

[H̃T
1 , . . . , H̃

T
k−1, H̃

T
k+1, . . . , H̃

T
K ]T , so that ∥ ¯̄HkT

(a)
k ∥2F quan-

tifies the MUI generated by MS-k to the other MSs, and the
design problem of {T(a)

k }Kk=1 is given by [7]

min
{T(a)

k }K
k=1

K∑
k=1

(∥∥∥ ¯̄HkT
(a)
k

∥∥∥2
F
+
KNsσ

2
n

Pt
∥T(a)

k ∥
2
F

)
. (15)

One of its non-trivial solutions is given by

T
(a)
k =

(
¯̄HH
k
¯̄Hk +

KNsσ
2
n

Pt
IMt

)−1

, (16)

which reduces the MUI to negligible levels. This enables each
MS to optimize the data stream transmission in its effective
subchannel H̃kT

(a)
k , with SVD H̃kT

(a)
k = Ub,kDb,kV

H
b,k. For

the k-th subchannel, its optimal digital precoder T(b)
k and the

digital combiner WD,k, which jointly eliminate the intra-user
interference are designed as

T
(b)
k = Vb,k(:, 1 : Ns), WD,k = Ub,k(:, 1 : Ns). (17)

Finally, under the total transmit power constraint, the nor-
malized digital precoder for MS-k is given as

FD,k =

√
KNs∑K

i=1 ∥FAT
(a)
i T

(b)
i ∥2F

T
(a)
k T

(b)
k , (18)

and the overall digital precoder is FD = [FD,1, . . . ,FD,K ].
In summary, the proposed EMU-HPC method is shown

in Algorithm 2 and its computational complexity is further
examined. Specifically, the analog combining has a complexity
order of O(KNepochNsNtNr), dominated by the computation
of the µs and wt in VR-PCAs. In analog precoding, the com-
plexity order is O(K2N2

s Nt), primarily from computing the
residual channel matrices. In the digital stage, RCD incurs a
complexity of O(K4N3

s ). Overall, EMU-HPC has a total com-
plexity order of O

(
KNsNtNrNepoch +K2N2

s Nt +K4N3
s

)
.

For comparison, Table I summarizes the complexity orders
of different hybrid precoding and combining algorithms. It
shows that the complexity of EMU-HPC is significantly lower
than HyEB [6] and HRCD [9], and is no higher than HyBD
[4], HySBD [12], and SROA [7], as verified by simulations.

Additionally, the feedback overhead of EMU-HPC in the
analog stage is KNsNt, since {H̄k}Kk=1 is fed back only once.
This is identical to HyBD, HySBD, and HyEB, but much
lower than KNsNiter(Nt +Nr) required by SROA, where Niter
is the maximum number of data-feedback rounds among all
AOs. These AOs may cause extra communication delays and
further hinder practical deployment. Besides, all algorithms
have identical feedback overhead in the digital stage.

Algorithm 2 The Proposed Efficient Multi-User Hybrid Pre-
coding and Combining (EMU-HPC) Algorithm
Input: {Hk}Kk=1, Nepoch, γ, ε
Output: {WA,k,WD,k}Kk=1, FA, FD

1: for k = 1 to K do
2: Obtain WA,k by Algorithm 1
3: Compute H̄k by H̄k = WH

A,kHk

4: end for
5: Initialize FA = ∅ and H̄res,k = H̄k, ∀k
6: for k = 1 to K do
7: Perform SVD of H̄res,k as H̄res,k = ŪkD̄kV̄

H
k

8: Obtain F̂A,k by F̂A,k = V̄k(:, 1 :Mr)
9: Obtain FA,k by (13)

10: for p = k + 1 to K do
11: H̄res,p ← H̄res,p(INt − F̂A,kF̂

H
A,k)

12: end for
13: FA ← [FA,FA,k]
14: end for
15: for k = 1 to K do
16: Obtain T

(a)
k by (16)

17: Obtain H̃kT
(a)
k with SVD H̃kT

(a)
k = Ub,kDb,kV

H
b,k

18: Obtain T
(b)
k and WD,k by (17)

19: end for
20: Obtain the digital precoders by (18), ∀k, and form FD

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY ORDERS

Algorithm Computational Complexity Order

EMU-HPC O
[
KNtNs(NepochNr +KNs) +K4N3

s

]
HyBD O

[
KNt

(
N2

r +KN2
s

)
+K4N3

s

]
HySBD O

[
KNt

(
N2

r +KN2
s

)
+K4N3

s

]
HyEB O[KN2

s Niter(N
2
t +N2

r ) +K2N4
s Nt +K4N3

s ]

HRCD O
[
KNt

(
N2

r +KN2
s

)
+K4N3

s +KNsNcNray
]

SROA O
[
KNtNs(NiterNr +KNr) +K4N3

s

]
IV. SIMULATION RESULTS

Apart from setting the large-scale fading factor to be
βk = 1, ∀k, the mmWave channel configuration follows
that in [4]. The signal-to-noise ratio (SNR) is defined as
Pt/σ

2
n . The EMU-HPC algorithm is compared with HyBD

[4], HySBD [12], MGLRAM [5], HRCD [9], and SROA [7].
The capacity-achieving iterative waterfilling-based dirty paper
coding (IWDPC) [13] is used as a benchmark for performance
upper bound. For EMU-HPC, the step size of VR-PCA is
γ = 0.01, the maximum number of epochs is 10 and the error
tolerance is ε = 10−3 (same as SROA for fairness).

Fig. 1 illustrates the sum-rate performance over SNR in
the mmWave channel, showing that EMU-HPC outperforms
other hybrid precoding and combining methods, except at very
low SNR. This improvement is mainly achieved through joint
interference management. Compared with SROA, EMU-HPC
requires far less feedback overhead to achieve a superior sum-
rate, rendering it more practical for deployment. Fig. 2 further
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mmWave massive MIMO systems with Ns = 2.
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mmWave massive MIMO systems with Ns = 2 (SNR=0dB).
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256×16 8-user mmWave massive MIMO systems with Ns = 2 (SNR=0dB).

presents the sum-rate performance versus the increasing num-
bers of MSs, where EMU-HPC achieves higher sum-rate than
other hybrid precoding and combining schemes at medium and
high K, and remains competitive at low K. Compared with
MGLRAM, which maximizes both MUI and array gains via
(10), EMU-HPC attains better performance by balancing array
gains and MUI suppression during analog precoding.

Fig. 3 illustrates the sum-rate performance as Nepoch in-

creases, indicating that EMU-HPC requires only Nepoch = 2
to surpass SROA, thereby satisfying NepochNr + KNs <
NiterNr +KNr with Niter averaging N̄iter = 13.96. Moreover,
Nepoch = 1 is sufficient to outperform HySBD, resulting in
NsNepochNr ≪ N2

r . Hence, EMU-HPC achieves the lowest
computational complexity among all hybrid precoding and
combining methods in Table I, demonstrating its efficiency.

V. CONCLUSION

In this paper, we propose the EMU-HPC method for
mmWave massive MU-MIMO to improve the sum-rate with
low feedback overhead. NI-GLRAM is employed in the analog
stage to maximize the array gain with minimal feedback,
while joint analog–digital interference suppression is realized
through the orthogonal matrix projection in analog precoding
and RCD in the digital stage. Numerical results demonstrate
that EMU-HPC achieves better performance compared with
existing hybrid precoding and combining algorithms.
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